若一条边的v小于等于u,则贡献为l*w/v,否则贡献为l*w/u
将边按v从小到大排序,将询问按u从小到大排序
用树链剖分维护链上和,val[0]表示第一种情况下的贡献,val[1]表示第二种情况下的贡献
一开始val[0]都是0,val[1]=l*w,
然后每到一个询问(s,t,u),就把所有v小于等于u的边修改掉,val[0]改为l*w/v,val[1]改为0
因为是环套外向树,所以把额外的边(exa,exb,exl,exv)拿走后变成了一棵树。
查询时在下面三种情况中取min:
1.(s,t)链上val[0]的和+(s,t)链上val[1]的和/u
2.(s,exa)链上val[0]的和+(t,exb)链上val[0]的和+((s,exa)链上val[1]的和+(t,exb)链上val[1]的和)/u+exl*exw/min(u,exv)
3.(s,exb)链上val[0]的和+(t,exa)链上val[0]的和+((s,exb)链上val[1]的和+(t,exa)链上val[1]的和)/u+exl*exw/min(u,exv)
时间复杂度$O(n\log n)$
#include#include #define N 100010using namespace std;inline void read(int&a){char c;while(!(((c=getchar())>='0')&&(c<='9')));a=c-'0';while(((c=getchar())>='0')&&(c<='9'))(a*=10)+=c-'0';}struct edge{int l,x,v,w,id;}E[N];struct que{int s,t,u,id;}Q[N];int n,m,q,i,x,y,z,t,exa,exb,exl,exx,exv,exw,cnt,now,V[N],W[N],g[N<<1],nxt[N<<2],v[N<<2],ed,size[N<<1],d[N<<1],f[N<<1],son[N<<1],loc[N<<1],top[N<<1],dfn;double ans[N],val[2][N<<3];inline bool cmpe(edge a,edge b){return a.v sizemax)sizemax=size[v[i]],heavy=v[i]; } if(heavy)son[x]=heavy;}void dfs2(int x,int pre,int t){ loc[x]=++dfn;top[x]=t; if(son[x])dfs2(son[x],x,t); for(int i=g[x];i;i=nxt[i])if(v[i]!=pre&&v[i]!=son[x])dfs2(v[i],x,v[i]);}void change(int p,int x,int a,int b,int c,double d){ if(a==b){val[p][x]=d;return;} int mid=(a+b)>>1; if(c<=mid)change(p,x<<1,a,mid,c,d);else change(p,x<<1|1,mid+1,b,c,d); val[p][x]=val[p][x<<1]+val[p][x<<1|1];}double ask(int p,int x,int a,int b,int c,int d){ if(c<=a&&b<=d)return val[p][x]; int mid=(a+b)>>1;double t=0; if(c<=mid)t=ask(p,x<<1,a,mid,c,d); if(d>mid)t+=ask(p,x<<1|1,mid+1,b,c,d); return t;}inline double query(int p,int x,int y){ double t=0; while(top[x]!=top[y]){ if(d[top[x]] d[y])swap(x,y); return t+ask(p,1,1,dfn,loc[x],loc[y]);}inline double getans(int x,int y,int u){ double t=query(0,x,y)+query(1,x,y)/(double)u,tmp; tmp=query(0,x,exa)+query(0,y,exb)+(query(1,x,exa)+query(1,y,exb))/(double)u+(double)exl*(double)exw/(double)(exv